

Question-2




| SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DEPARTMENT OF MECHANICAL ENGINEERING |  |  |  |  |  |
| Class Test - II |  | Session-2022-23 | Month- June |  |  |
| Sem-4 $4^{\text {th }}$ |  | Subject- Strength of Materials |  |  |  |
| Code - B037413(037) |  | Time Allowed: 2 Hrs | $\frac{\text { Max Marks: } 40}{}$ |  |  |
| Note: - Attempt all question. Parts (a) are compulsory of each question. Solve any two parts from (b), (c) and (d) of each question. |  |  |  |  |  |
| $\begin{aligned} & \text { Q. } \\ & \text { No } \end{aligned}$ |  | Questions | Marks | Levels of Bloom's taxonomy | CO |
| Unit-I |  |  |  |  |  |
| 1.A | What is pure bending? Analyze and write the types of loads and beams. |  | 4 | Analyzing | COL |
| 1.B | Prove that, $\frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R}$ |  | 8 | Applying | CO2 |
| 1.C | Draw shear force and bending moment diagram for the simply supported beam as shown in figure: |  | 8 | Applying | CO2 |
| 1.D | T-shaped cross section of a beam shown in fig. is subjected to a vertical shear force of 100 kN . Calculate the shear stress at the neutral axis and at the junction of the web and the flange. Moment of Inertia about the neutral axis is $0.0001134 \mathrm{~m}^{2}$ |  | 8 | Applying | CO2 |

## Unit-II


$27 / 06 / 23 / \mathrm{MECH} / \mathrm{s}+\mathrm{MW} / \mathrm{s}=$ I


| Unit - II |  |  |  |  |  |  |  | Analyzing | CO3 |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.A | Analyze and write the advantages and disadvantages of Resistance welding <br> process. | $\mathbf{4}$ | Remember | CO3 |  |  |  |  |  |
| 2.B | Describe the projection welding process. | $\mathbf{8}$ | Remember | CO3 |  |  |  |  |  |
| 2.C | Explain the process of thermit welding with regard to its working principle, <br> equipment advantages field of operation. | $\mathbf{8}$ | Remember | CO3 |  |  |  |  |  |
| 2.D | Describe the friction welding and its applications, advantages and <br> disadvantages. | $\mathbf{8}$ | R |  |  |  |  |  |  |

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT \& TECHNOLOGY, Raipur
DEPARTMENT OF MECHANICAL ENGINEERING

| DEPARTMENT OF MECHANICAL ENGINEERING |  |  |  |
| :---: | :---: | :---: | :---: |
| Class Test: II | Session: January- June, 2023 | Month: June, 2023 |  |
| Semester: IV | Subject: Kinematics of Machines |  |  |
| Code: B037415(037) | Time Allowed: 2 Hours | Max Marks: 40 |  |

Note: - Part A of Question 1 and Question 2 is compulsorv. Attempt any Two Parts out of B, C and D in Question 1 and Question 2.

|  | Questions | Marks | Levels of <br> Bloom's <br> Qo | CO |
| :--- | :--- | :--- | :---: | :---: |

## Question 1

| 1.A | Differentiate between higher pair and lower pair with suitable examples. | 4 | Understand | $\mathrm{CO1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1.B | Analyze the difference between two different types of quick return motion mechanism with diagrams. | 8 | Analyze | CO1 |
| 1.C | The length of various link of mechanism as shown in fig. 1 (c) are as follow $\begin{aligned} & \text { are as follow } \\ & \mathrm{OA}=150 \mathrm{~mm} ; \mathrm{AC}=600 \mathrm{~mm} ; \mathrm{CQ}=\mathrm{QD}=145 \mathrm{~mm} ; \mathrm{CD}=125 \\ & \text { nen snace and } \end{aligned}$ $\mathrm{mm} ; B D=500 \mathrm{~mm}$ and $O Q=625 \mathrm{~mm}$. Draw the space and velocity diagrams. <br> Fig. 1 (C) | 8 | Apply | C01 |



## Question 2

| 2.A | (i) For a cam and follower mechanism define pressure angle and <br> pitch curve <br> (ii) What are the applications of cam and follower mechanism? | 4 | Remember | CO3 |
| :---: | :--- | :---: | :---: | :---: |
| 2.B | Classify cams with suitable diagrams. | 8 | Understand | CO3 |
|  | Draw the profile of a cam operating a roller reciprocating <br> follower with following data minimum radius of cam= 25mm, <br> lift= 30mm, roller diameter=15mm, <br> 2.C cam lifts the follower for 120 with SHM followed by a <br> dhwell period of 30 $0^{0}$. Then the follower lowers down during 1500 <br> of cam rotation with uniform acceleration and deceleration <br> followed by a dwell period. If the cam rotates at a uniform speed <br> of 150rpm, calculate the maximum velocity and acceleration of <br> the follower during the descent period. | 8 | Apply | CO3 |
|  | Draw the displacement, velocity and acceleration diagrams <br> when the follower moves with simple harmonic motion and <br> derive relations for maximum velocity and maximum <br> acceleration during ascent and descent of follower. | 8 | Apply | CO3 |

