S	HRI SHANKARA	ACHARYA INSTITUTE OF PROFESSION	L MANAC	GEMENT AN	D
	Γ	TECHNOLOGY, RAIPUR (C.G.) DEPARTMENT OF MECHANICAL ENGIN	FFRINC		
C	lass Test – II	Session- Jan-June, 2023		- June, 2023	
Se	emester - 4th	Subject- Applied Thermodynam			
Code	e – B037411(037)	Time Allowed: 2 Hours		Marks: 40	
		ulsory, from other parts B, C and D, attempt .evel of Bloom's taxonomy and CO.	any two pa	urts.	
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со
		Question – 1			
1.A	Define Volumetrie utility of compress	c Efficiency of a compressor . Also, Explain the	^{he} 4	U	2
1.B	Explain the princ reciprocating com	ciple, construction and working of Single activ pressor.	1g 8	υ	2
1.C	Bor Stro Suc Dis Suc Dis Spe Sha Ma Calculate: - (a) Vo	ciprocating compressor with re dia = 15 cm oke length = 12 cm ction pressure = 1 Bar ccharge pressure = 6 Bar ction temperature = 20 °C ccharge temperature = 177 °C red of machine = 800 RPM aft power = 6 kW ss of air delivered = 1.6 kg/min lumetric Efficiency (b) Indicated power cchanical Efficiency (d) Isothermal Efficiency	8	A	2
1.D	Derive the express reciprocating comp	ion for the power required to drive the single stag pressor.	^{3e} 8	А	2

	Question – 2				
2.A	Describe the different operations of Rankine cycle with T-S diagram.	4	U	3	
2.B	Steam at a pressure of 15 bar and 250°C is expanded through a turbine at first to a pressure of 4 bar. It is then reheated at constant pressure to the initial temperature of 250°C and is finally expanded to 0.1 bar. Using Mollier chart, estimate the work done per kg of steam flowing through the turbine and amount of heat supplied during the process of reheat. Compare the work output when the expansion is direct from 15 bar to 0.1 bar without any reheat. Assume all expansion processes to be isentropic.	8	A	3	-
2.C	A simple Rankine cycle works between pressures 28 bar and 0.06 bar, the initial condition of steam being dry saturated. Calculate the cycle efficiency, work ratio and specific steam consumption.	8	A	3	
2.D	Explain with a neat diagram the working of a Binary vapour cycle.	8	A	3	

2

26/06/23/ME(H/ATD/5-I

	SHRI SHANKARAC	HARYA INSTITUTE OF PROFESSIONAL MANAGI	EMENT AND	TECHNOLOGY	1
		DEPARTMENT OF MECHANICAL ENGINE			
C	Class Test – II	Session- Jan-June 2023	Month	1- June 2023	
	Sem- 4 th	Subject- Fluid Mechanics			
Cod	e - B037412(037)	Time Allowed: 2 hrs	Max	Marks: 40	
Note: -		red to focus on question and marks columns only. estion A is compulsory and attempt any two from B, C	& D.		
Q. No		Questions	Marks	Levels of Bloom's taxonomy	со
		Unit – I			
1.A	Write Short Note	es On Types of Flow.	4	Remember	2
1.B		ralized Continuity equation and deduce from equation for two- and one-dimensional	n 8	Understandin g	2
1.C	Where a,b,c,e and are the velocity c (b) Does these ve	distribution for a three dimensional flow is u = a + by - cz v = d - bx - ez w = f + cx - ey d f are arbitrary constants. Show that these omponents of a fluid motion. Hocity components represent irrotational rmine the vorticity and rotation.	8	Applying	2
1.D		he flow defined by the stream function Ψ ? If so, determine the corresponding veloci		Applying	2

	Unit – II			
2.A	State Buckingham's π -theorem and Dimensional Analysis.	4	Remember	5
2.B	The efficiency η of a fan depends on density ϱ , dynamic viscosity μ of the fluid, angular velocity ω , diameter D of the rotor and the discharge Q. Express η in terms of dimensionless parameters.	8	Understanding	5
2.C	The pressure difference Δp in a pipe of diameter D and length 1 due to turbulent flow depends on the velocity V, viscosity μ , density ϱ and roughness k. Using Buckingham's π -theorem, obtain an expression for Δp .	8	Applying	5
2.D	The ratio of length of a sub-marine and its model is 30:1. The speed of sub-marine(prototype) is 10m/s. the model is to be tested in a wind tunnel. Find the speed of air in wind tunnel. Also determine the ratio of the drag(resistance) between the model and its prototype. Take the value of kinematic viscosities for sea water and air as 0.012 strokes and 0.016 stokes respectively. The density for seawater and air is given as $1030 \frac{kg}{m^3}$ and $1.24 \frac{kg}{m^3}$ respectively.	8.0	Applying	5

	Unit – 11			Calo Anti-	
2.A	Analyze and explain double integration method, Macaulay's method, and moment area method?	4	Analyzing	CO1	
2.В	A beam AB of 4 meters span is simply supported at the ends and is loaded as shown in fig. Determine: (1) Deflection at C (2) Maximum deflection, and (3) Slope at the end A 20kN A D L L D L L D L L D L L D L L D L L D L L D D L D D L D D L D D D D D D D D D D	8	Applying	CO2	C
2.C	A cantilever of 3 metres length and of uniform rectangular cross section 150 mm wide and 300 mm deep is loaded with a 30 kN load at its free end. In addition to this it carries a uniformly distributed load of 20 kN per metre run over its entire length, Calculate: (i) The maximum slope and maximum deflection; (ii) The slope and deflection at 2 metres from the fixed end. Take E=210 GN/m ²	8	Applying	CO2	
2.D	A beam 6 metres long is loaded as shown in the Figure. If the flexural rigidity (EI) of the beam is 8×10^4 kNm ² find the deflection at point C. 300kN 4 150kN+m C 4 4 2m 30	8	Applying	CO2	

27/06/23/MECH/STRI/S-I

	DE	PARTMENT OF MECHANICAL ENGINE	ERING				
С	Class Test – II Session-2022-23 Month- June						
	Sem- 4 th	Subject- Manufacturing Process					
	– B037414(037)	Time Allowed: 2 Hrs	(1.1.) (1.1.)	Marks: 40			
Note: -	Attempt all question. Parts (a	a) are compulsory of each question. Solve any two p	arts from (b), (c)	and (d) of each c	questio		
Q. No		Questions	Marks	Bloom's taxonomy	co		
		Unit – I					
1.A	Analyze Write short note	s on source of energy for welding process.	4	Analyzing	со		
1.B	Define welding joints an	d also explain its types.	8	Remember	сс		
1.C	Explain principle of arc electric arc welding.	welding. Give a list of equipments required	for 8	Remember	СС		
1.D	Discuss the TIG welding	process.	8	Remember	СС		

		Unit – II			
	2.A	Analyze and write the advantages and disadvantages of Resistance welding process.	4	Analyzing	CO3
y	2.B	Describe the projection welding process.	8	Remember	CO3
	2.C	Explain the process of thermit welding with regard to its working principle, equipment advantages field of operation.	8	Remember	CO3
	2.D	Describe the friction welding and its applications, advantages and disadvantages.	8	Remember	CO3

DEPARTMENT OF MECHANICAL ENGINEERING					
CI	ass Test: II	Session: January- June, 2023	Month:		
a lite and the second	mester: IV	Subject: Kinematics of Machines	and the second		1.1.1.1
	: B037415(037)	Time Allowed: 2 Hours	Max	Marks: 40	
Note: -		on 1 and Question 2 is compulsory. Attempt any Tw 1 2.	o Parts oi	tt of B, C and I	<u>D in</u>
Q. No		Questions	Marks	Levels of Bloom's Taxonomy	CO
		Question 1			
1.A	Differentiate be examples.	etween higher pair and lower pair with suitable	4	Understand	CO
1.B	Analyze the dif return motion 1	ference between two different types of quick nechanism with diagrams.	8	Analyze	со
1.C	are as follow	arious link of mechanism as shown in fig. 1 (c) AC = 600 mm; CQ = QD = 145 mm; CD = 125 an and $OQ = 625 \text{ mm}$. Draw the space and ms. $I = \frac{1}{G}$ $I = \frac{1}{G}$ $I = \frac{1}{G}$ $I = \frac{1}{G}$ $I = \frac{1}{G}$ $I = \frac{1}{G}$ $I = \frac{1}{G}$	8	Apply	CC

	Question 2			
2.A	(i) For a cam and follower mechanism define pressure angle and pitch curve(ii) What are the applications of cam and follower mechanism?	4	Remember	CO3
2.B	Classify cams with suitable diagrams.	8	Understand	CO3
2.C	Draw the profile of a cam operating a roller reciprocating follower with following data: minimum radius of cam= 25mm, lift= 30mm, roller diameter=15mm, The cam lifts the follower for 120° with SHM followed by a dwell period of 30° . Then the follower lowers down during 150° of cam rotation with uniform acceleration and deceleration followed by a dwell period. If the cam rotates at a uniform speed of 150rpm, calculate the maximum velocity and acceleration of the follower during the descent period.	8	Apply	C03
2.D	Draw the displacement, velocity and acceleration diagrams when the follower moves with simple harmonic motion and derive relations for maximum velocity and maximum acceleration during ascent and descent of follower.	8	Apply	CO3

28/06/23/MECH/KOM/5-7